Gene ontology annotations for COL6A1 |
|
Experiment description of studies that identified COL6A1 in exosomes |
1 |
Experiment ID |
235 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
2 |
Experiment ID |
235 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
3 |
Experiment ID |
254 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
MNT-1 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
4 |
Experiment ID |
255 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
G1 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
5 |
Experiment ID |
256 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
501mel |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
6 |
Experiment ID |
258 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
SKMEL28 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
7 |
Experiment ID |
260 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
1205Lu |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
8 |
Experiment ID |
126 |
ISEV standards |
✘
|
EV Biophysical techniques |
✔
GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry [LTQ-FT Ultra]
|
PubMed ID |
Unpublished / Not applicable
|
Organism |
Homo sapiens |
Experiment description |
Mesenchymal Stem Cell Exosomes: The Future MSC-based Therapy? |
Authors |
Ruenn Chai Lai, Ronne Wee Yeh Yeo, Soon Sim Tan, Bin Zhang, Yijun Yin, Newman Siu Kwan Sze, Andre Choo, and Sai Kiang Lim |
Journal name |
Mesenchymal Stem Cell Therapy
|
Publication year |
2011 |
Sample |
Mesenchymal stem cells |
Sample name |
huES9.E1 |
Isolation/purification methods |
HPLC |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Antobody array Mass spectrometry |
|
|
9 |
Experiment ID |
219 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✘
|
EV Cytosolic markers |
✔
CD63|CD9
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25857718
|
Organism |
Homo sapiens |
Experiment description |
Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins |
Authors |
Chan YK, Zhang H, Liu P, Tsao GS, Li Lung M, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P |
Journal name |
Int J Cancer
|
Publication year |
2015 |
Sample |
Nasopharyngeal carcinoma cells |
Sample name |
C666-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.17-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
10 |
Experiment ID |
220 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✘
|
EV Cytosolic markers |
✔
CD63|CD9
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25857718
|
Organism |
Homo sapiens |
Experiment description |
Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins |
Authors |
Chan YK, Zhang H, Liu P, Tsao GS, Li Lung M, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P |
Journal name |
Int J Cancer
|
Publication year |
2015 |
Sample |
Nasopharyngeal carcinoma cells |
Sample name |
NP69 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.17-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
11 |
Experiment ID |
221 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✘
|
EV Cytosolic markers |
✔
CD63|CD9
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25857718
|
Organism |
Homo sapiens |
Experiment description |
Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins |
Authors |
Chan YK, Zhang H, Liu P, Tsao GS, Li Lung M, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P |
Journal name |
Int J Cancer
|
Publication year |
2015 |
Sample |
Nasopharyngeal carcinoma cells |
Sample name |
NP460 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.17-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
12 |
Experiment ID |
136 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
HSP70|HSP90|RAB5
|
EV Cytosolic markers |
✔
CD9
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
|
PubMed ID |
22723089
|
Organism |
Homo sapiens |
Experiment description |
Prostate cancer cell derived exosomes |
Authors |
Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year |
2012 |
Sample |
Prostate cancer cells |
Sample name |
PC3 - Rep 2 |
Isolation/purification methods |
Sucrose density gradient |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [QTOF] |
|
|
13 |
Experiment ID |
137 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
HSP70|HSP90|RAB6
|
EV Cytosolic markers |
✔
CD10
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
|
PubMed ID |
22723089
|
Organism |
Homo sapiens |
Experiment description |
Prostate cancer cell derived exosomes |
Authors |
Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year |
2012 |
Sample |
Prostate cancer cells |
Sample name |
PC3 - Rep 3 |
Isolation/purification methods |
Sucrose density gradient |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [QTOF] |
|
|
14 |
Experiment ID |
275 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|RAB5A
|
EV Cytosolic markers |
✔
CD9|CD82|CD63|CD81
|
EV Membrane markers |
✔
AIF
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25844599
|
Organism |
Homo sapiens |
Experiment description |
Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors |
Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, Ullen A, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year |
2015 |
Sample |
Prostate cancer cells |
Sample name |
DU145 - Docetaxel sensitive |
Isolation/purification methods |
Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.12-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry/Flow cytometry/Western blotting |
|
|
15 |
Experiment ID |
274 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|RAB5A
|
EV Cytosolic markers |
✔
CD9|CD82|CD63|CD81
|
EV Membrane markers |
✔
AIF
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25844599
|
Organism |
Homo sapiens |
Experiment description |
Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors |
Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, Ullen A, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year |
2015 |
Sample |
Prostate cancer cells |
Sample name |
DU145 - Docetaxel resistant |
Isolation/purification methods |
Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.18 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Flow cytometry Western blotting |
|
|
16 |
Experiment ID |
66 |
ISEV standards |
✔
IEM
|
EV Biophysical techniques |
✔
TSG101|Alix
|
EV Cytosolic markers |
✔
CD63|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
19199708
|
Organism |
Homo sapiens |
Experiment description |
Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). |
Authors |
Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR |
Journal name |
JPR
|
Publication year |
2009 |
Sample |
Saliva |
Sample name |
Saliva |
Isolation/purification methods |
Differential centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [LTQ] Western blotting Immunoelectron Microscopy |
|
|
17 |
Experiment ID |
13 |
ISEV standards |
✔
IEM
|
EV Biophysical techniques |
✔
Alix|RAB4|RAB5B|RAB11|TSG101
|
EV Cytosolic markers |
✔
CD9|AQP2|AQP1
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
15326289
|
Organism |
Homo sapiens |
Experiment description |
Identification and proteomic profiling of exosomes in human urine. |
Authors |
Pisitkun T, Shen RF, Knepper MA |
Journal name |
PNAS
|
Publication year |
2004 |
Sample |
Urine |
Sample name |
Urine - Normal |
Isolation/purification methods |
Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [LCQ DECA XP] Western blotting |
|
|
18 |
Experiment ID |
63 |
ISEV standards |
✘
|
EV Biophysical techniques |
✘
|
EV Cytosolic markers |
✔
AQP2
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
19056867
|
Organism |
Homo sapiens |
Experiment description |
Large-scale proteomics and phosphoproteomics of urinary exosomes. |
Authors |
Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA |
Journal name |
JASN
|
Publication year |
2009 |
Sample |
Urine |
Sample name |
Urine - Normal |
Isolation/purification methods |
Differential centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [LTQ] Western blotting |
|
|
19 |
Experiment ID |
196 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Alix|TSG101|HSP70
|
EV Cytosolic markers |
✔
CD9
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
22418980
|
Organism |
Homo sapiens |
Experiment description |
A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. |
Authors |
Raj DA, Fiume I, Capasso G, Pocsfalvi G. |
Journal name |
Kidney Int
|
Publication year |
2012 |
Sample |
Urine |
Sample name |
Urine - Normal high density |
Isolation/purification methods |
Differential centrifugation Sucrose cushion |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
20 |
Experiment ID |
197 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Alix|TSG101|HSP70
|
EV Cytosolic markers |
✔
CD9
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
22418980
|
Organism |
Homo sapiens |
Experiment description |
A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. |
Authors |
Raj DA, Fiume I, Capasso G, Pocsfalvi G. |
Journal name |
Kidney Int
|
Publication year |
2012 |
Sample |
Urine |
Sample name |
Urine - Normal low density |
Isolation/purification methods |
Differential centrifugation Sucrose cushion |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
Protein-protein interactions for COL6A1 |
|
Pathways in which COL6A1 is involved |
|
|
|